Константы

Число Авогадро, N_A	$6.022 imes 10^{23}$ моль $^{-1}$
Элементарный заряд, e	$1.602 \times 10^{-19} \text{K}$ л
Универсальная газовая постоянная, R	$8.314 Джмоль^{-1} K^{-1}$
Постоянная Фарадея, F	96 485 Кл моль ⁻¹
Постоянная Планка, <i>h</i>	$6.626 imes 10^{-34}$ Дж с
Температура в Кельвинах (К)	$T_{\rm K} = T_{\rm ^{\circ}C} + 273.15$
Ангстрем, Å	$1 \times 10^{-10} \mathrm{m}$
пико, п	$1 \text{mm} = 1 \times 10^{-12} \text{m}$
нано, н	$1 \text{ HM} = 1 \times 10^{-9} \text{ M}$
микро, мк	1 мкм = 1×10^{-6} м

1																	18
1 H 1.008	2											13	14	15	16	17	2 He 4.003
3 Li 6.94	4 Be 9.01													10 Ne 20.18			
11 Na 22.99	12 Mg 24.31	3	4	5	6	7	8	9	10	11	12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.97	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.95	43 Tc -	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57- 71	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209.0	84 Po -	85 At -	86 Rn -
87 Fr -	88 Ra -	89- 103	104 Rf -	105 Db -	106 Sg -	107 Bh -	108 Hs -	109 Mt -	110 Ds -	111 Rg -	112 Cn -	113 Nh -	114 Fl -	115 Mc -	116 Lv -	117 Ts -	118 Og -

La	Ce 58	59 Pr	60 Nd	61 Pm	Sm	⁶³ Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
138.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89 Ac -	90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np -	94 Pu -	95 Am -	96 Cm -	97 Bk -	98 Cf -	99 Es -	100 Fm -	101 Md -	102 No	103 Lr -

Официальный комплект заданий 7-класса.

Регламент олимпиады:

Перед вами находится комплект задач республиканской олимпиады 2022 года по химии. **Внимательно** ознакомьтесь со всеми нижеперечисленными инструкциями и правилами. У вас есть **5 астрономических часов (300 минут)** на выполнение заданий олимпиады. Ваш результат – сумма баллов за каждую задачу, с учетом весов каждой из задач.

Вы можете решать задачи в черновике, однако, не забудьте перенести все решения на листы ответов. Проверяться будет **только то, что вы напишете внутри специально обозначенных квадратиков**. Черновики проверяться **не будут**. Учтите, что вам **не будет выделено** дополнительное время на перенос решений на бланки ответов.

Вам разрешается использовать графический или инженерный калькулятор.

Вам запрещается пользоваться любыми справочными материалами, учебниками или конспектами.

Вам **запрещается** пользоваться любыми устройствами связи, смартфонами, смарт-часами или любыми другими гаджетами, способными предоставлять информацию в текстовом, графическом и/или аудио формате, из внутренней памяти или загруженную с интернета.

Вам **запрещается** пользоваться любыми материалами, не входящими в данный комплект задач, в том числе периодической таблицей и таблицей растворимости. На **титульной странице** предоставляем единую версию периодической таблицы.

Вам **запрещается** общаться с другими участниками олимпиады до конца тура. Не передавайте никакие материалы, в том числе канцелярские товары. Не используйте язык жестов для передачи какой-либо информации.

За нарушение любого из данных правил ваша работа будет **автоматически** оценена в **0 бал- лов**, а прокторы получат право вывести вас из аудитории.

На листах ответов пишите **четко** и **разборчиво**. Рекомендуется обвести финальные ответы карандашом. **Не забудьте указать единицы** измерения **(ответ без единиц измерения будет не засчитан)**. Соблюдайте правила использования числовых данных в арифметических операциях. Иными словами, помните про существование значащих цифр.

Если вы укажете только конечный результат решения без приведения соответствующих вычислений, то Вы получите ${f 0}$ баллов, даже если ответ правильный.

Решения этой олимпиады будут опубликованы на сайте www.qazcho.kz.

Рекомендации по подготовке к олимпиадам по химии есть на сайте www.kazolymp.kz.

Задача №1. Тест

За каждый верный ответ	Bcero	Bec(%)
1	10	10

- 1. Что изучает наука химия?
 - А. Человека и природу
 - В. Вещества, их свойства и превращения
 - С. Деление клеток
 - D. Природные явления
- 2. Вещества, состоящие из различных атомов
 - А. Озон и кислород
 - В. Уголь и алмаз
 - С. Фуллерен и графит
 - D. Аммиак и азот
- 3. Какова валентность кислорода?
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- 4. Формула гидроксида меди (I)
 - A. CuOH
 - B. CuO
 - C. Cu₂O
 - D. $Cu(OH)_2$
- 5. Из атомов каких элементов состоит вода?
 - А. Натрий и хлор
 - В. Кислород, азот
 - С. Водород, кислород
 - D. Водород, хлор
- 6. Как называется первая группа в таблице Менделеева?
 - А. Галогены
 - В. Халькогены
 - С. Благородные газы
 - D. Щелочные металлы
- 7. Какую химическую формулу имеет поваренная соль?
 - A. NaBr
 - B. NaF
 - C. NaCl
 - D. NaI
- 8. Сколько процентов содержится кислорода в атмосфере?
 - A. 1%

- B. 78%
- C. 50%
- D. 21%
- 9. Что может являться примером химической реакции?
 - А. Горение древесины
 - В. Плавление поваренной соли
 - С. Таяние льдов
 - D. Растворение сахара в воде
- 10. Группа только простых веществ приведена в ряду:
 - А. Кислород, воздух, вода
 - В. Кислород, алюминий, угарный газ
 - С. Серебро, водород, озон
 - D. Хлор, золото, хлороводород

Задача №2. Серебряная ёлочка

2.1	Bcero	Bec(%)
8	8	21

Ученик 7 класса, заинтересованный в химии, помогал своему учителю навести порядок в лаборатории, параллельно задавая ему вопросы. Наткнувшись на стакан, приготовленный для эксперимента "Серебрянная Ёлочка", ученик поинтересовался у учителя что находится в стакане, на что тот ему ответил: "В стакане находится раствор азотнокислого серебра". Ученик 7 класса уже знал это вещество и решил подробнее изучить этот эксперимент, а заодно улучшить свои химические навыки. Для этого он взял 200 мл раствора, предназначенного для этого эксперимента, неизвестной концентрации (р = 1.152 г мл⁻¹). Чтобы ее вычислить, ученик провел опыт самостоятельно и собирался взвесить проволочную ёлочку после эксперимента. Он заметил, что в течение эксперимента оттенок раствора становился более голубым. После окончания эксперимента ученик получил 5 серебряных ёлочек, масса каждой из которых с начала эксперимента ученик получил 5 г. Произведя нетрудные расчёты, ученик определил массовую долю азотнокислого серебра в изначальном растворе, за что его похвалил школьный учитель.

1. Вычислите значение массовой доли, которое получил ученик 7 класса. Укажите из какого металла были сделаны ёлочки для эксперимента и соль, которая содержалась в растворе после окончания эксперимента.

Задача №3. Газовые реакции

3.1	3.2	3.3	Всего	Bec(%)
5	9.5	2.5	17	24

$$AB_2 + BB_2 = AB_3 + BB$$

Эквимолярная смесь AB_2 и BB_2 имеет плотность равной 2.455 г/л. Массовая доля A в AB_2 равна 50%, а массовая доля B в BB_2 равна 30.435%.

1. Найдите неизвестные элементы и допишите реакцию.

Газ AB_2 при растворении воде образует K_1 (p-ция 1), который дает осадок при смешивании с раствором хлорида кальция (p-ция 2). Газовая смесь BB_2 и BB при растворении в воде образует K_2 (p-ция 3), которая со временем начинает разлагаться до K_3 и BB (p-ция 4). Если в воде растворить только BB_2 , то образуется раствор с K_2 и K_3 (p-ция 5). AB_3 растворяясь в воде образует K_4 (p-ция 6). AB_3 при реакции с газообразным веществом K_5 , которая имеет плотность равной 1.63 г/л, образует K_6 (p-ция 7).

2. Определите K_1 – K_6 и напишите все упомянутые реакции. К какому классу соединении они поллежат?

 K_2 можно превратить в K_3 несколькими путями, где основным моментом является использование окислителей, как: H_2O_2 , Cl_2 (водный раствор), $KMnO_4$.

3. Напишите все три реакции получения K_3 из K_2 . Какой метод является лучшим выбором для получения чистого раствора K_3 , не содержащих других веществ? (Объясните)

Задача №4. Казалось бы, простая смесь

4.1	4.2	4.3	Bcero	Bec(%)
3	1	2	6	24

Юные химики Дидар и Анель решили исследовать школьную лабораторию, и наткнулись на баночку со стертой этикеткой. От любопытства они решили спросить у старшеклассника Айдара, какие вещества находятся в этой баночке, на что Айдар ответил им, что там находится смесь карбонатов двух щелочноземельных металлов. После этого юные химики решили взять 22.76 г смеси, и прокалили при высокой температуре до прекращения изменения массы твердого остатка. Оказалось, что масса полученного твердого остатка составила 16.16 г.

А: Мне кажется, я нашла как минимум один щелочноземельный металл!

Д: Я тоже нашел, правда, как быть со вторым металлом, увы, нет идеи.

В этот подходящий момент старшеклассник Айдар вновь заглянул к юным химикам, и сообщил им, что один из щелочноземельных металлов окрашивает пламя в кирпично-красный цвет. После этого юные химики благополучно определили качественный и количественный состав содержимого в баночке.

- 1. Какой щелочноземельный металл нашли юные химики Анель и Дидар первым делом? Ответ обоснуйте расчетами.
- 2. Определите второй щелочноземельный металл.
- 3. Рассчитайте массовые доли двух карбонатов в смеси.

Задача №5. Титрование

5.1	5.2	5.3	5.4	Всего	Bec(%)
1.5	1.5	3	4	10	21

Для лечения язвы желудка путем снижения кислотности желудочного сока используются антациды, то есть вещества способные нейтрализовывать избыточную кислоту, например карбонат магния. В этой задаче вам надо определить массовую долю карбоната магния в одной таблетке, считая что весь эффект наступает только от него, остальная масса таблетки - инертный наполнитель, например целлюлоза. Для этого используется титрование соляной кислотой с известной концентрацией. При титровании берется известное количество образца (например, 1 таблетка), к которому добавляется титрант, быстро и количественно реагирующий с анализируемом веществом, пока индикатор не покажет что все анализируемое вещество израсходовано, означая точку эквивалентности, то есть точку, при которой количество молей эквивалента добавленного титранта и образца равны. Для стандартизации раствора соляной кислоты сначала взяли 0.567 г чистого карбоната натрия. Точка эквивалентности настала после добавления 53.49 мл соляной кислоты, чтобы достичь точки эквивалентности, то есть весь карбонат магния прореагировал со всей добавленной соляной кислотой.

- 1. Запишите химические формулы карбоната магния, соляной кислоты и карбоната натрия.
- 2. Запишите уравнения химических реакций соляной кислоты с карбонатами магния и натрия. Сколько молей соляной кислоты требуется для полной реакции с 1 молем карбоната магния? Сколько молей соляной кислоты требуется для полной реакции с 1 молем карбоната натрия?

- 3. Рассчитайте количество молей карбоната натрия. Рассчитайте сколько молей соляной кислоты было добавлено для полной реакции. Определите молярную концентрацию соляной кислоты по формуле C = n/V, где n количество вешества в молях, а V объем в литрах. (1 π = 1000 мл)
- 4. Рассчитайте сколько молей соляной кислоты было добавлено при титровании таблетки используя концентрацию, рассчитанную выше и объем добавленной соляной кислоты к таблетке. Рассчитайте сколько молей карбоната магния было в таблетке, учитывая результаты пункта 2. Рассчитайте массу карбоната магния. Рассчитайте массовую долю карбоната магния в таблетке в процентах.